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Preface

The VexTM Robotics Design System was made for creating designs from scratch, 
and  experienced robot  builders  will  find themselves  in  inventors’  heaven.   However, 
builders without much experience may struggle to put together even a simple robot that 
actually  works.   Step-by-step  instructions  are  given  for  the  Squarebot  in  the  VexTM 

Inventor’s  Guide,  but  trying  to  build  unique  designs  beyond  that  can  be  an 
insurmountable challenge to builders without a foundation in basic mechanics.  So far, 
few projects with step-by-step instructions are available (two new official  projects are 
projected to be released by Fall 2008 on the Vex Robotics website).  Many ingenious 
VexTM  robot designs are posted on the internet but few of them explicitly tell you which 
parts they use.  An eager builder may attempt some of these designs, only to run out of 
parts mid-way through the project.   After a few false starts, discouragement sets in.

Having a few projects with instructions can increase a builder’s confidence and 
experience until s/he gets a “feel” for how the parts go together.  Each project in this 
guide demonstrates a different mechanical or programming principle, and together with 
VexTM  for the Technically Challenged, can provide a basic foundation of some important 
engineering principles.

Part I (Starter Kit Projects) is designed for those who have purchased only the 
Starter Kit and would like to build a few fun things without investing more money (yet). 
Part II (Beginning Programming Projects) is designed to introduce a variety of sensors 
and includes projects that are mechanically simple enough to be built with the Starter Kit. 
The programs are also deliberately simple enough to introduce non-programmers to just a 
few concepts at a time.  Part III (Advanced Mechanical Projects) delves into some deeper 
mechanical concepts and uses a variety of parts.  

A note to educators:  Students usually prefer to dive in and build a gadget that 
does something funky, rather than being blasted with theory.   However, these projects 
were selected and arranged around something vaguely resembling a curriculum, with an 
aim to  introduce  important  engineering  concepts  in  an  underhanded  way.   If  all  the 
projects in this manual are completed, the students will have used many of the sensors 
and important mechanical parts that were available as of this writing.  More importantly, 
they  will  hopefully  emerge  with  a  reasonable  grasp  of  important  mechanical  and 
programming principles that will move them in the direction of being able to design and 
construct their own projects. 

We would like to thank our teammates from Team Metal Gear (Alexa Adams, 
Nathan Anthony,  Eric Flores, Rafi Mitri,  Alan Schambers,  and Ryan Schambers),  for 
their participation in the earlier version of this project, and also for making our robotics 
experience a fun and wild ride.  Most of all, we would like to thank the Great Inventor for 
carrying us on this incredible journey.

Justin Petersen, Mechanical Guy
Yolande Petersen, Team Mom & Coach
June 16, 2008



Before You Begin

Nearly all of the projects in this guide require cutting of the metal  pieces that 
come in the kit.  In many cases, the cut pieces are more useful than the full-length pieces: 
having a 5-inch angle bar and a 10-inch angle bar is usually more beneficial than having a 
15-inch angle bar, and having two 6-inch square bars is generally preferable to having a 
single 12-inch square bar.  However, one important thing to consider is that while a large 
piece can be made into several small  pieces,  it  is usually not possible to fuse several 
small pieces to create a larger one.  Also consider that there are a number of possible 
cutting configurations for each piece—what if the 12-inch square bar was not needed in 
the form of two 6-inch square bars, but three 4-inch square bars instead?

If you plan to build a large collection of Vex parts, you should be able to cut what 
you need without leaving yourself in a hole.  However, if your resources are limited and 
you feel squeamish about cutting your brand new Vex parts, fret not.  In many cases, the 
projects in this guide can be built using larger versions of other parts.  For example, a 15-
inch angle bar may be substituted for a 10-inch angle bar, simply leaving 5-inches of 
extraneous material hanging off.  This is not feasible in all situations—sometimes the 
extra hanging off could interfere with a moving part of the robot, and replacing a 5-inch 
angle bar with a 15-inch leaves such a large portion of metal hanging out that its weight 
may hinder the robot's balance.  However, if you find yourself with a long bar strip or 
plate that is a few holes too large, or a square bar that is a little bit too long, you can 
usually get away with using it and not trimming off the excess length.  See this excerpt 
from the Animal Grabber building instructions for an example of when it's okay to have a 
piece of metal that is slightly too long:

Although the strip in the middle is the ideal length (six holes), the seven-hole strips still 
adequately perform the function of holding the two bearing flats.

The microcontroller has 3 "strips" of ports:  motor (with 8 slots), analog/digital 
(16 numbered slots, plus RX & TX slots), and interrupt (6 slots).  The analog/digital strip 
is used for analog inputs, digital inputs, and digital outputs.  We reference these ports 
throughout the guide.  For example "digital input 6" means slot #6 on the analog/digital 
strip.  

In  Part  II  of  the  guide,  many  projects  call  for  the  use  of  a  Basicbot  or 
Flexigearbot.  However, in most cases these specific models are recommend simply on 
the basis of ease of mounting.  If you have a similar robot on which you can mount the 
"peripherals" added for sensor use, you are free to use that robot as a substitute.

Many  of  the  programs  included  in  the  project  are  functional  but  inelegant. 
Because an effort was made to present them in the simplest way possible, many of them 



include areas where performance can be dramatically enhanced with a little tweaking. 
Probably  the  easiest  programming  segments  to  modify  are  motor  speed  and  timing 
(especially  while  turning),  but  clever  programmers  may find  different  ways  to  boost 
efficiency.   The section on the Light Seeker robot contains a section dedicated to this 
subject.  The program is simple but sloppy and performs a task with many degrees of 
freedom.  Can you create a program that is more optimal?

At any stage, feel free to make modifications and improvements.  Or use an idea 
or part of a project to jumpstart your own projects, which may be totally different from 
what you see here – that's what good engineering is all about.

This guide is mainly intended for building, so the explanations tend to be brief. 
We  have  prepared  another  document,  VexTM for  the  Technically  Challenged,  which 
concentrates  more  on theory and is  occasionally  referenced in  this  guide.   The  most 
current version is posted at:  
http://www.vexrobotics.com/vex-education-general-resources.shtml



2009 Update

In November 2008, the Vex Starter Kit (Vex Robotics Design System v .5) was 
discontinued after nearly 4 years of successful sales.  The Starter Kit is the listed under 
"Kits Required" throughout the manual,  and it can still  be purchased on eBay.  In its 
place, the Protobot Kit,  in conjunction with the option of several Starter Bundles was 
offered.  The Protobot bundles have some advantages over the original Starter Kit – they 
have fewer pieces that require cutting,  and the extra wheels and motors provide more 
options for simple changes to the chassis and manipulators.  The original Starter Kit had 
only  building  instructions  for  only  one  model  and  could  not  be  easily  modified  by 
novices; however, it contained many pieces that were beneficial to advanced users, but 
using these pieces effectively required purchase of additional items.

If you plan to use the building instructions in this manual, you can assume that the 
Starter Kit can be replaced by one of the Protobot Bundles, plus one Metal and Hardware 
Kit.  The Radio Control Starter Bundle (plus Metal & Hardware) replaces the Starter Kit 
in projects using R/C only – this includes all projects in the Part I, as well as the Tricycle 
Drive, Cup Crusher, and Chin-upbot. The Autonomous Control Bundle (plus Metal and 
Hardware) includes the Programming Kit and is sufficient for most of the projects in Part 
II (except the Boomerang). The Boomerang, the Holonomic Drive, and the Candy Sorter 
require  the  Dual  Control  Bundle,  which  will  also  allow  you  to  build  all  R/C  and 
Autonomous  projects.   If  you  purchase  one  of  the  larger  bundles  containing  more 
structural metal, such as the Booster Kit or the Classroom Lab Kit, it is not necessary to 
purchase the Hardware and Metal Kit separately.  In our opinion, the Classroom Lab Kit 
is the most versatile set and best value of parts for the money.

One  huge  monkey  wrench  to  be  thrown  into  the  works  in  Fall  2009  is  the 
anticipated  release  of  the  Vexnet  2.0  system.   This  is  a  major  upgrade  on  the  v0.5 
controller and will include WiFi capability.  It will probably be expensive -- speculative 
projections  by users  (not  official  suppliers)  are  estimating  prices  in  the  $400 -  $500 
range.   This  includes  the  control  system  only  (it  replaces  the  microcontroller  and 
transmitters only) and does not include motors, metal, or mechanical parts, which will be 
compatible with both the old and new systems.  If you already own an old v0.5 control 
system, you can purchase the Vexnet Upgrade Bundle (now available) for $150.  This 
plug-in will add Wi-Fi capability, but will not have the major upgrades of the 2.0 system 
(such as expansion from 8 motor ports to 16).

If you are a hobbyist, the Protobot bundles or old Starter Kit will probably be fine. 
However,  if  you  plan  to  take  part  in  a  Vex competition  you  will  probably need  the 
Vexnet with WiFi to be competition compliant.

For  more  details  regarding  currently  available  kits,  see  Appendix  A:  
Recommendations for Kit Purchase (Summer 2009).



Part I:  Beginning Mechanical Projects

There are many cool VexTM designs on the Internet (check out the photo gallery at 
www.vexrobotics.com), but Murphy's Law dictates that you probably won't have enough 
parts to build most of them.   VexTM Starter Kits (the primary kit sold before 2009) and 
Starter  Bundles (currently offered) seem to undergo 2 common fates:  they grow and 
multiply,  bringing delight to their owners (while simultaneously emptying the owner's 
wallet), or they occupy closet space, virtually untouched, until they eventually end up on 
e-Bay.  In particular, people who have used a simpler "stand-alone" system like LEGOTM 

Mindstorms are sometimes surprised and disappointed by how little they initially are able 
to do with a Starter Kit or Bundle.   The payoff with VexTM comes later rather than sooner 
– with 8 motor ports and 16 sensor ports (vs. 3 motor and 4 sensor ports for LEGOTM 

Mindstorms NXT), an incredible level of complexity can be reached IF you're willing to 
spend the money and the time.

Alas, big IF!  To be used effectively, a VexTM Starter Kit or Bundle will need to be 
added to  at  some point,  but  there  are  still  a  few fun things  that  you  can  build  with 
minimal parts.  If you are fortunate enough to have acquired a Starter Kit before it was 
discontinued, you will have all the parts needed to build all the projects in this section.  If 
you have a Starter Bundle, the addition of a Metal and Hardware Kit will provide all 
extra parts needed for the projects in this section.  
  Hopefully, with a few projects under your belt, you can make a better decision 
about whether to and what to invest in.



Basicbot

Project  Description:   Robust,  highly  maneuverable,  4-wheel  drive  robot.   This  is  a 
simpler version of the Squarebot, which was documented in the first version of the VexTM 

Inventors' Guide.

Kits Needed:  1 VexTM Starter Kit  
OR

1 Starter Bundle with Radio Control  
OR

1 Classroom Lab Kit

Cut Pieces Needed:  none

Bill of Materials:  
2 large (60-tooth) gears
4 medium (36-tooth) gears
2 motor modules (NOT servo motors)
4 small wheels
1 microcontroller
1 RF receiver module
1 antenna sleeve holder (gray square part)
1 antenna sleeve holder (black tube part)
1 antenna sleeve
1 battery pack (7.2 v)

4 chassis rails
4 chassis bumpers
4 square bars (axles), 3-inch
2 square bars (axles), 2-inch
12 bearing flats
14 collars
6 large spacers
4 motor screws
36 keps nuts
36 medium length screws (3/8", ½" or 5/8")



Build Sequence:  

Attach 2 bearing flats to the middle row of a chassis rail, 2 holes from each end, as shown.

In  the  same  way,  attach 
bearing flats to 3 more chassis 
rails (to get 4 identical rails).

Flip 2 chassis rails over and attach a bearing block to the 
back of each rail,  middle  row in the 3 center  holes as 
shown.  Set aside these 2 rails for now.

On the other 2 rails, attach a motor to each rail using motor screws.  Place the motor on 
the inside of the rail and the bearing flat on the outside of the rail.  On one rail, the motor 
should  be  immediately  next  to  the  left  bearing  block;  on  the  other  rail,  it  should  be 
immediately next to the left bearing block (the 2 rails should be mirror-image reflections 
of each other, not identical copies).



Insert a 2-inch axle into each motor as far as it 
will go and anchor with a collar.

Insert  3-inch  axles  through  each  of  the 
bearing block holes.  

Anchor each of the axles with a collar on the 
outside.   The axle  should extend through the 
bearing  block  and  rail,  but  should  extend  as 
little as possible past the inside of the rail.

Slide  large  gears  onto  the  2  motor  axles. 
Slide medium gears onto the 4 corner axles.

Slide 4 collars onto the 4 corner axles (do 
NOT put a collar on the motor axles).

Slide  large  spacers  onto  each  of  the  6  axles. 
Slide the 2 chassis  rails  (previously set  aside) 
onto the axles – the holes should line up.  Be 
sure the chassis rails are all oriented with hole 
strips down and thin edge facing up.



Attach the 4 rails to chassis bumpers in the front and back.  Line up the gears and collars so 
that they fit snugly and evenly.  Tighten collars.  

Turn over chassis and anchor top side of 
the chassis bumpers in 4 (or 8) places.

Slide  wheels  onto  each  axle  and  anchor  with 
collars.  Attach the microcontroller on top

Plug motors into Motor Ports 2 and 3.  Attach RF module to chassis and plug into RX 1 or 
RX 2 on microcontroller.   Slide RF antenna through sleeve, and black tube over sleeve. 
Attach the gray antenna sleeve holder to chassis, and mount black tube on holder, bending 
antenna through slot.  Attach battery using battery strap or tape (the lazy way!).



Project Notes and Engineering Principles:

Gearing and Direction of Motion  
The Basicbot has 3 gears on each side.  Watch how the motor  drives the center 

gear, and the 2 side gears are driven.  These wheels will turn in the directions as shown 
below:

Note that the direction of rotation alternates back and forth from one gear to the next. 
Thus, gears with an odd number of gears in between (like the 2 end gears shown above, 
with 1 gear between) will turn in the same direction, while gears with an even number of 
gears between (including 0) will turn in opposite directions.

Drive Trains (Four-Wheel Drive)
Note that each of the 2 motors on each side causes 2 wheels to turn, making this a 

4-wheel drive robot.  As a result,  the Basicbot is highly maneuverable – it gets good 
traction  and  is  easily  controlled.   It  is  also  relatively  fast  because  of  its  geared-up 
configuration (more on that in the next project). Two-wheel and 6-wheel drive are also 
commonly used.  There are other types of drive trains which allow wheels to operate 
independently of each other or the chassis, including holonomic drives and swerve drives. 



Flexigearbot

Project  Description:   A  2-wheel  drive  robot  whose  main  design  feature  is  the  easy 
exchange of gears.  It converts from geared up to geared down to geared with a 1:1 ratio 
in under 5 minutes.

Kits Needed:  1 Vex Starter Kit  
OR

1 Starter Bundle with Radio Control, plus 1 Square Bar, 6 " or 12"
OR

1 Classroom Lab Kit

Cut Pieces Needed:  
1 square bar (axle), 6" (optional – a 12" axle can be used if you wish to keep the 12" axle 

uncut for other projects)

Bill of Materials

1 microcontroller
1 RF receiver module
1 antenna sleeve holder (gray square part)
1 antenna sleeve holder (black tube part)
1 antenna sleeve
2 motor modules (NOT servo motors)
1 battery pack (7.2 v)
2 small wheels (with rubber tires)
1 small wheel hub (rubber removed)
2 large (60-tooth) gears
2 small (12-tooth) gears
4 medium (36 tooth) gears

1 metal plate (5" X 15")
1 chassis bumper
4 chassis rails
1 long square bar (6" preferred, but 12" OK)
4 square bars (3")
36 keps nuts
6 small plastic spacers (.182)
10 bearing flats 
14 collars
4 small motor screws (1/4")
32 medium length screws (3/8" or ½" or 5/8" 
– use  3/8" in tight corners)
4 long screws (3/4")



Build Sequence

Attach bearing flats to the chassis rails as shown.  The center pair of flats is attached to the 
middle row of holes, closest to the edge with screws facing up.   The outer pair of flats is 
located in the last row, offset 3 holes from the edge with screws face down.  The rails are 
mirror-image symmetrical, not identical.

Attach a chassis bumper to the ends nearest the bearing flats offset by 3 holes.

Attach a metal plate to the chassis rails as shown.



Turn the chassis upside down and attach motors on the inside of the rails.

Attach bearing flats to 2 additional chassis rails as shown.



Turn the chassis right-side up and attach the 2 outer rails.

Insert 3-inch axles into the motors and anchor with a collar from inside the chassis.



Attach the wheels, using 2-inch axles.  Anchor with 2 collars outside and 1 small spacer on 
the inside of the wheel.

Attach  the  gears,  anchoring  with  collars  on  the  outside.   This  configuration  (small  gear 
driving a large gear) is geared down.



Attach the castor wheel, anchoring with collars next to the wheel and inner rails.  The 6-inch 
axle is preferred (making the outer bearing flats extraneous), but a 12-inch axle may be used 
if desired to avoid cutting.

Alternate axle
configuration.

Attach microcontroller, RF module, antenna, and battery.  Plug motor wires into motor ports 
2 & 3, using Channels 2 & 3 (forward and reverse joysticks) on the transmitter. Let 'er rip!



Alternate configurations:
Exchange the gears for a geared-up bot. Replace the large and small gears with 2 

medium-sized gears for 1:1 gearing.

Project Notes and Engineering Principles

Gear Ratios
The speed of a robot largely depends on 1)  how fast the motors are turning, 2) the 

size of the wheels,  and 3)  the gear ratio  connecting the driving motor  to the driven 
wheels.  To better visualize the role of gear ratios, suppose a motor is connected to an 
axle which turns a 60-tooth (large) gear.  A single rotation moves this gear through 60 
teeth.  If this gear is coupled with a 12-tooth gear, one rotation will drive the small gear 
through 60 teeth.  However, since only 12 teeth are needed to produce a single rotation of 
the small gear, this gear will make 5 complete rotations every time the large gear turns 
once. This means that the wheel will rotate 5 times as fast as the motor.  Causing the 
driven axle to move faster than the drive axle is called gearing up.   While going faster 
may seem like a good thing, you can't get something for nothing, and what is gained in 
speed is lost in torque, or strength of turning.



The Flexigearbot has 3 configurations:  geared up, geared down, and geared in a 
1:1 (same) ratio.  Try all 3 and test your robots for different parameters such as speed, 
ability to climb a slope, ease of turning around obstacles, and effectiveness on different 
surfaces, like tile, carpet, and gravel.  

One factor that biases the outcome should be noted:  the large gears are almost the 
same size as the small wheels, and if the gears touch the ground (likely to happen on soft, 
uneven surfaces like carpet), the friction will work against the wheel motion or with it. 
When geared up, the gears oppose the wheel motion; when geared down, they assist it.

Quiz question:  What type of gearing does the Basicbot use?

Two-Wheel Drive
This robot has 2 powered wheels and a "dead" castor wheel.  Not surprisingly, 2-

wheel drive robots are often called castorbots.  Castors may also be pivoting castors, like 
those on a swivel chair, or they may simply be a low-friction object that drags on the 
ground (sometimes called a  skid).  Rubberless wheels, omniwheels, and bearing blocks 
are often used for castors.  Because of the lack of traction, castorbots tend to be more 
difficult to maneuver than 4-wheel drive robots.



Ping Pong Shooter

Design and Build:  Yolande Petersen and Ryan Schambers

Project Description:  Mechanism which shoots ping pong balls up to 5 feet (easy project!)

Kits Needed:  1 Vex Starter Kit
OR

1 Protobot Bundle with Radio Control
OR

Cut Pieces Needed:  None

Bill of Materials:
1 microcontroller
1 battery
1 RF receiver
1 motor
2 motor screws
4 threaded beams, ½ "
2 threaded beams, 2"
1 chassis rail
1 plate 5 X 15 holes
2 large gears (60-tooth)
2 square bars (axles), 3"

4 bearing flats
6 keps nuts
4 small screws (1/4")
6 medium screws (3/8" or ½ ")
2 collars
4 large spacers
4 small spacers
2 intake rollers



Build Sequence:

Attach motor to middle row of chassis rail.

Attach bearing flat to the inside of chassis rail, leaving the middle hole empty.

Attach threaded beams to chassis rail in the middle row



Insert axle into motor.  Anchor one end of second axle and feed it through bearing flat.

Attach gears to axles.  Add one large and one small spacer to each axle.

Add an intake roller and large spacer to each axle



Attach 2 bearing flats to the middle row of the plate as shown.  Hole positions will correspond 
to the axle positions.

Feed the 2 long screws through the plate, then screw on ½ " threaded beams until the screws 
are flush with the beams.

Join the ½ " and 3" threaded beams by screwing the rest of the long screws into the 3" beams. 
Anchor the non-motor axle with a collar.  



Attach ½" threaded beams to the bottom.  These lift the front of the device, providing a bit of a 
ramp for the balls to launch.  Turn the device right-side up, and feed the ping pong balls from 
the bottom of the ramp into the intake device.  Attach battery, RF receiver and motor wire to 
microcontroller (e.g. to motor port 3), using the joystick (channel 3) to activate the motor. 
Watch your fingers!

Project Notes and Engineering Principles
This  project  is  fun and quick to build,  but not  particularly profound.  It  does 

demonstrate  use of the intake rollers  for grabbing,  a common practice in competition 
when trying to score a large volume of objects, like balls or rings.



Animal Grabber – Part 1:  The Gripper

Project Description:  Mechanism which grabs and lifts squishy objects about 3-inches in 
diameter.

Kits Needed:  1 Vex Starter Kit (plus 1 extra plate 5 X 15 holes, if available)

Cut Pieces Needed: 
2 long bars, 10 holes
2 long bars, 9 holes,
3 long bars, 6 holes (or slightly longer)
2 angle bars, 2 ½ "
(Note:  one long bar, 25 holes cuts nicely into 10 + 9 + 6 holes)

Bill of Materials (for Parts 1 and 2)

1 microcontroller
1 RF receiver module
1 battery pack
2 motor module
1 PWM extension cable
4 large (60-tooth) gears
2 small (12-tooth) gears
2 square bars (12")
2 square bars (2")
2 or 3 plates (5"X15") – 3rd is optional
2 long bar strips (1 X 10 hole)
2 long bar strips (1 X 9 hole)
3 long bar strips (1 X 6 hole or longer)
1 long bar strip (1 X 15 or longer)

2 angle bars (15" or shorter)
2 angle bars (2 ½ ")
2 chassis bumpers
4 chassis rails
16 bearing flats
18 collars
12 long screws (3/4")
47 medium screws (3/8" or ½ ")
59 keps nuts
4 long motor screws
4 large spacers
13 small spacers



Build Sequence
Attach gears to 2½" angle bars, placing small spacers between gears and angle bars.

Attach 9-hole, then 10-hole strips to angle bars, separated by large spacers.

Bend strips until the ends meet, and attach the tips, separated by large spacers.



Attach bearing flats, motor, and "fingers."  Nest gears so that the "fingertips" are more or 
less symmetrically placed.  Note that it's useless to attach a collar to the motor axle, as 
this does not prevent the axle from falling out.

Attach motor to a microcontroller, battery pack, and RF module.  You can now open and 
close the pinchers.  They move fast, because they're not geared down.



Project Notes and Engineering Principles:  

You may have seen machines where (for a "modest" fee), a claw will swoop down 
and attempt to grab and lift a stuffed animal from a pile.  Unfortunately, there is strong 
motivation to use a poor design -- the worse the claw works, the more money it makes for 
the vendor!  This project is capable of lifting a small  stuffed animal.   Because of its 
complexity, the project is divided into 2 parts:  the gripper, and the lift. 

Grippers (One-Axis Linear Grip)
Imagine grabbing an object, like a soda can, with only your thumb and forefinger. 

You would probably attempt to grab the can by either 1) pinching it with the tips of your 
fingers or 2) encircling it with the entire length of the arc formed by your thumb and 
forefinger.  In the same way, a linear one-axis grip holds an object with either the tips of 
its arms or by encircling it with its arms, the way you would hold onto a very large beach 
ball.  For round objects, the second method requires less force to hold an object, as the 
greater contact surface provides more friction.  The first method also requires that the 
"finger tips" be positioned very precisely, but is better for picking up small, light objects 
of irregular shape.

To keep hold of the object, you have to continually keep the motor powered to 
apply continuous pressure, or the pinchers will "let go", even if they remain closed.  For 
this  reason,  a  continuous motor,  rather  than  a  servo (with  motion  limited  to  120o of 
rotation) is used, as a servo is capable of closing on the object but unable to move beyond 
a certain point to apply the needed pressure.  There are other gripper designs that keep 
holding on without continual powering from the motor.  These include 2-axis grips, roller 
grips, and grips using bi-stable designs (having 2 stable positions: open and closed) such 
as those activated by rubber bands or pneumatics.



Animal Grabber – Part 2:  The Lift

See Part 1 for Project Description, Kits Needed, Cut Pieces Needed, and Bill of Materials

Build Sequence:

Attach chassis bumpers for lift arms to the metal plate.  Note that diagonal placement of the 
screws secures the bumpers in 2 dimensions with a minimum of 2 screws.

Attach gears to the end of the lift arm, using small spacers to reduce gear friction.



Build the base.  Slightly shorter angle bars (e.g. 12 ½" bars) also can be used for the base.

Assemble side supports, joining 2 chassis rails, and attaching bearing flats that will support the 
axles.



Attach supports across the top and back, a minimum of 15 holes.  A long bar (or bars) can be 
substituted for the plate if necessary.

Assemble axle supports (ideally 6-hole bars, but slightly longer is OK).



Attach the lift arm to the frame, inserting the 12" axle through the collars, supports, and gears 
in the order shown.  Red lines indicate position of the frame.

Attach  motor  below  first  axle, 
lining up holes for second axle.

Insert the lower axle, attaching gears and collars in the order shown.



Plug the battery, RF module, and motors (ports 2 and 3) into the microcontroller.  Because this 
model is non-mobile, placement is flexible.  However, a PWM extension cable is needed for 
the gripper motor, as the motor wire is too short when the lift is fully extended.

Rear View Front View



Project Notes and Engineering Principles

Lifts
One very  important  consideration  in  designing  a  lift  is  the  amount  of  torque 

required, which depends on the weight lifted and the length of the arm.  It is important to 
keep length of the lift arm to a minimum, as torque increases as you increase distance 
from the weight to the pivot point.  Even so, most lifts (including this one) need to be 
geared down, trading speed for increased strength.  

Bracing
Another consideration in this design is that the weighted long axle tends to bend 

downward, preventing the gears from fitting snugly together and causing them to slip. 
For this reason, 3 braces are inserted between axles, keeping the distance between the 2 
axles constant.  Had the 2 side supports been placed closer together, the axles would have 
less of a tendency to bend, making the braces unnecessary.  However, this would produce 
a narrower base, and the structure would be more likely to tip over.  It is often necessary 
to make tradeoffs like this.

Various  long bars  and plates  are  used to  brace  the frame.   The  size of  these 
supports is flexible – pieces that hang over the edge are acceptable, even if they don't 
look pretty.  This is a concession to minimize cutting, as too-large pieces can be reused in 
other projects that require larger pieces; once cut too small, they can't be increased in 
size.



Part 2:  Beginning Programming Projects

The ability to make robots that move  autonomously (i.e., without user input) is 
what distinguishes a true "robot" from a remote control vehicle.  Without programming, 
the capability  of your  powerful  (and expensive,  compared  to  a remote  contolled  car) 
microprocessor goes to waste.

There are currently 3 programming options available.  EasyC is icon-based and is 
fittingly  the  easiest  to  learn.   Because  its  commands  are  drag-and-drop  icons,  users 
experience fewer syntax errors, as one cannot misplace stray semicolons and brackets. Its 
disadvantages  include  slow  download  times  and  certain  limitations  that  experienced 
programmers find frustrating (novice programmers most likely won't know what they're 
missing).  ROBOTC is text-based, but menu driven.  Because commands are typed, not 
selected,  it  is  more  likely  that  syntax  errors  will  occur.   However,  downloading  of 
programs is  faster,  and the language is  more flexible  than EasyC.   ROBOTC is also 
available for multiple hardware systems (including LEGO Mindstorms NXT), so learning 
is transferable if you switch to a compatible system.  MPLAB is generally recommended 
only for experienced C users.  More facts for comparison are available at:
http://www.vexrobotics.com/vex-robotics-programming-kit.shtml.

Because this guide is designed for beginners, EasyC is used.  It is recommended 
that you work through the tutorial that comes packaged with the CD in the programming 
kit.   If  you  did  not  receive  a  tutorial,  it  can  be  downloaded  here: 
http://www.vexrobotics.com/docs/inventors-guide/programming-guide.pdf

In addition to the programming kit, you may want to purchase additional sensors. 
The Kentucky Do-Nothing and the Edge Detector make use of sensors already included 
in the Starter Kit, the bumper switch and limit switch.  The other sensors (line follower, 
ultrasonic  range  finder,  optical  shaft  encoder,  and  light  sensors)  must  be  purchased 
separately.   Soon-to-be  released  sensors  include  the  potentiometer,  compass  sensor, 
accelerometer, and gyroscope.  

The required mechanical parts in these projects have been deliberately kept to a 
minimum, using only parts in the Starter Kit.  The Basicbot and Flexigearbot are selected 
as  the  driving  bases  for  simple  construction.   In  some  cases,  the  bases  are 
interchangeable.   For  others,  the Basicbot  is  preferable  for  maneuverability,  while  in 
others, the Flexigearbot is preferred for its lower gear-ratio,  producing a slower robot 
capable  of  more  precise  sensing.   The  programs  are  also  simple  (many  with  ideas 
borrowed from other robotic systems) and are designed to demonstrate the use of one 
sensor at a time.

For debugging, there are 2 useful diagnostic tools at your disposal:  the Online 
Window and the Terminal Window (which displays the results of all "Print to Screen" 
commands.  More details on use can be found in Vex for the Technically Challenged.



The Kentucky Do-Nothing

Project Description:  Robot  programmed to reverse direction whenever it bumps a wall 
or obstacle.  

Kits needed:  
1 Starter kit
1 Programming kit

Cut Pieces Needed:  None

Bill of Materials
1 Basicbot chassis
2 bumper sensors
8 screws

Build Sequence:  
Attach one bumper to the front and one to the back.  

Plug in motor wires (left wire to motor port 2, right wire to port 3).  Insert front sensor 
wire into digital input 5 and the back sensor wire into digital input 6 (located on the 
analong/digital strip).
.  
Programming and Operation  

Enter the program shown below.   Although variables are not visible from the 
EasyC code, there are 2 variables that must be defined:  bumper1 and bumper2.  These 2 
variables will hold the input from each of the bumper sensors, 1 or 0, and thus, the type 
"int" (integer) is most suitable.  To define variables, click on the "variables" icon in the 
stack.  For the first variable, under "Type", the drop-down menu will allow you to select 
the type, in this case, "int" for integer.  In the next box, the name of the variable should be 
entered  (bumper  1).   No  value  is  listed,  since  it  will  change  value  throughout  the 
program.  The true C code shows the definition of these 2 variables.
 It  is  advisable  to  hold  the  robot  with  its  wheels  off  the  ground  (a  stack  of 
paperbacks to prop up the center is effective) while downloading, as the robot will be off 
to the races as soon as downloading is complete.

Place the robot in a narrow corridor (away from furniture and breakables) with the 
bumpers facing opposite walls, and watch it bounce off the walls, reversing as it bumps. 



If the robot does not reverse unless the "wrong" bumper is pressed, you may have to 
exchange the sensor wires in ports 5 and 6.  

It is rare that 2 motors are perfectly matched, and if the walls are separated by too 
great a distance, the robot will tend to veer, as the difference in speeds on either side will 
cause the robot to travel in a curved or circular path.  If there is enough space, it may 
even bounce off the same wall, traveling back and forth in a semicircle.

The motor speeds in this program are set at 0 and 255, the maximum clockwise 
and counterclockwise speeds.  Choosing speeds closer to the "stop" position of 127, say 
55 and 200 will cause the robot to travel more slowly.  Any curving of the robot can also 
be straightened to some extent by tweaking the motor speeds accordingly.

Project Notes and Engineering Principles
This beginning programming project requires minimal building skills.  It  does, 

however, introduce the concept of using sensors to govern motion.  The outer "while" 
loop causes the robot to bounce off the walls indefinitely, until the robot is turned off. 



The inner "while" loops serve as sensor watchers – the program keeps the motors running 
in the same direction and keeps looking at the bumper sensor until a change in value is 
detected.

The bumper sensor is a digital sensor, with possible readings of 1 (not pressed) or 
0 (pressed).  The default designation of analog/digital inputs and outputs is:

Ports 1 – 4:  Analog inputs
Ports 5 – 10:  Digital inputs
Ports 11 – 16:  Digital outputs

The  ports  can  be  reconfigured  if  desired  by  double  clicking  on  the  "Config" 
button at the beginning of a program and using the right and left mouse buttons to change 
the input/output type of each port.  Reconfiguring the 4 analog ports into digital ones 
would allow you to use ports 1 – 4 as digital inputs for this project.



The Scaredybot

Project Description:  Robot programmed to back up whenever an "intruder" approaches it 
within 10 inches or less.

Kits needed:  
1 Starter Kit
1 Programming Kit
1 Ultrasonic Sensor

Cut pieces needed:  none

Bill of Materials:
1 Basicbot chassis
1 ultrasonic sensor
2 medium screws
2 keps nuts

Build Sequence:
Attach ultrasonic sensor to front of Basicbot chassis.  

Plug left and right motor wires into motor ports 2 and 3.  Plug the "Input" wire from the 
ultrasonic sensor into analog/digital port # 11 (this is a digital output).  Plug the "Output" 
wire into interrupt port # 1.

Programming and Operation:
Download  the  following  program.   The  variable  "variablename"  should  be 

defined as an integer; it records the distance of the nearest obstacle, as detected by the 
ultrasonic sensor.  The Scaredybot is antisocial – leave it alone and it sits placidly in 
place; walk into its "personal space" within a few inches of the ultrasonic sensor, and it 
backs away from you.

If an obstacle of is detected 10 inches away or nearer, the robot is programmed to 
back up for 1 second, and the cycle of waiting for the next "intruder" continues.



Project Notes and Engineering Principles
When triggered,  an  ultrasonic  sensor  emits  a  high  frequency ultrasonic  signal 

which bounces off the nearest obstacle, returning to the sensor.  As soon as the signal is 
sent, a timing loop on the microcontroller begins, which ends when the return signal is 
received.   The time interval between signal sent and received determines the distance 
between the sensor and the nearest obstacle.  A digital output from port 11 is used to 
trigger the start of the signal.  The input is received through interrupt 1, and the variable 
receives and stores this number as the approximate distance in inches, calculated using 
the time interval. 

The  range  of  readings  for  the  ultrasonic  sensor  is  between  1  and  99  inches; 
accurate readings for distances as close as 3 inches can generally be obtained.  Distances 
farther than 30 inches may be irregular and inconsistent – interfering factors which may 
produce unpredictable results include robot movement and the tilt of the sensors (toward 
or away from the floor).  



Edge Detector

Project  Description:   Robot  programmed  to  move  away  from  the  edge  of  a  table, 
preventing it from falling off.  It will also keep itself in the center of a room, moving 
away from walls.

Kits needed:  
1 Starter kit
1 Programming kit

Cut Pieces Needed:  None

Bill of Materials:
1 Basicbot chassis, preassembled
2 limit sensors
4 threaded beams, 3"
20 medium screws
2 extra chassis bumpers (angle bars 7.5" or 

longer are OK if you only have the 
Starter Kit)

2 bearing flats

4 bearing blocks
12 keps nuts
2 large spacers
2 collars
1 square bar (axle), 12"
2 plates, 3 X 3 holes or larger  (4 X 5 plates 

are used here)
2 long bars, 25 holes

Build Sequence:
Attach 2 vertical supports to Basicbot chassis (bumpers or angle bars)



Attach light sensors to vertical supports with threaded beams.

Attach bearing blocks to the sides of the vertical supports, leaving the  bottom hole empty.

Insert axle through the bottom holes, anchoring with collars on the inside, spacers on the 
outside.



Assemble "arms" as shown.

Slide bearing blocks onto axle ends.  The "arms" can be flipped forward or backward and 
should not bump against the bearing flats mounted on the vertical supports – use more spacers 
if needed.  Anchor with a collar.

Bend the "arms" around the limit switches so that they almost touch the switch when resting 
on the ground.  When an arm reaches the edge of the table, its weight should depress the 
switch.  The switch should also be pressed when the arm bumps into a wall or barrier.  Plug 
the motor wires into motor ports 2 (right) and 3 (left), the sensor wires into digital inputs 5 
(right) and 6 (left).



Programming and Operation

Enter and download the following program, which looks at both the left and right 
sensors from digital inputs 5 and 6.  Define the variables "left", "right", and "sum" under 
"Variables"  as  integers.   To  operate,  place  the  robot  on  a  tabletop  with  both  arms 
supported by the table.  Note that when the robot reaches an edge, one of the arms is 
unsupported, triggering the limit switch.  The robot backs up and swings in the opposite 
direction of the arm that fell off (it attempts to get closer to the center of the table).  The 
robot also can be used to detect walls.





Project Notes and Engineering Principles
The limit sensor, like the bumper sensor, is a digital sensor, with possible readings 

of 1 (not pressed) or 0 (pressed).  The sensor loop continues while neither limit sensor is 
pressed (sum of 2 sensor readings = 2).  When either sensor is pressed, the robot backs up 
and turns (direction depending on which sensor detects the edge), then repeats by going 
forward toward the edge again.



 Line Follower

Project Description:  Robot programmed to follow a black line using a single line 
follower sensor.

Kits needed:  
1 Starter Kit
1 Programming Kit
1 Line Tracker kit

Cut Pieces Needed:
1 long bar, 9 holes

Bill of Materials:
1 Flexigearbot, preassembled (using 
    1:1 gearing w/ 4 medium gears)
1 Line Tracker sensor
1 long bar (9 holes)

1 gusset plate
5 medium screws (3/8" or ½")
5 keps nuts

Build Sequence:  
Assemble the flexigearbot.  Attach a 9-hole strip to the front.

Attach the line tracker sensor  to the front using a gusset plate (bottom views)



Plug left and right motor wires into ports 2 and 3.  Plug the line follower sensor into 
analog input 1.

Programming and Operation  
The variable  "light"  should be defined as an integer under "Variables."  Then 

enter and download the program shown below.  
A threshold of 650 was chosen to separate "light" from "dark", as the lighting 

conditions in the room varied between 30 and 600 for "white" and >700 for "black." 
Depending on the lighting in your room, this  value may need to be adjusted.   Motor 
speeds of 64 and 192 were chosen so that the robot travels slowly enough for the sensor 
to detect the line before driving completely over it.

The robot should be placed on the left side of the line (as it faces forward).



Project Notes and Engineering Principles:
The line tracker sensors give readings between 0 and 1023, with 0 being brightest, 

and 1023 being darkest.  The readings vary greatly depending on the lighting conditions 
in the room and the distance from the sensor to the surface being read.  More accurate 
readings with less variation occur when the sensor is as close to the marked surface as 
possible.

This line follower follows the edge between black and white on the left side of a 
line. It starts on the left and first "looks for" the line on its right.  When sensor readings 
cross the threshold from light to dark, the robot turns away from the line briefly, then 
turns toward it again, until it finds it.  It continues to follow the edge between white and 
black, as long as the black is on the right and the white is on the left.  

If the line is too thin or the corners are too sharp, the robot will drive over the line 
without detecting it.   Driving more slowly is one way to solve this problem; for this 
reason the 1:1 configuration of the Flexigearbot was chosen (rather than a geared-up bot 



like the Basicbot).   In addition, the motors were programmed to run at speeds of less 
than full capacity.

Further Challenges
Can you devise a line follower that  uses 2 sensors that  straddle  a  black line? 

What advantages and disadvantages are there to this arrangement?  How about a 3-sensor 
line follower?



Boomerang

Project Description:  Using remote control, the user moves a robot a desired distance, and 
programming returns it to its original position.

Kits needed:  
1 Starter kit
1 Programming kit
1 Optical Shaft Encoder Kit (Quadrature Encoder Kit may be used, but will require 

reprogramming)

Cut Pieces Needed: 
1 square bar (axle), 4"
1 angle bar, 5"

Bill of Materials:
1 Basicbot or Flexigearbot, (using 
    1:1 gearing w/ 4 medium gears)
1 optical shaft encoder 
    (or quadrature encoder)
1 square bar, 4"

1 angle bar, 5"
1 threaded beam, ½ "
2 short screws, ¼ "
5 medium screws, 3/8" or ½"

Build Sequence:
Replace the 3" axle on the right motor with a 4" axle.  Mount the encoder on the axle.  If 
using a Basicbot,  use replace one axle with a 4" axle and mount  the encoder on the 
outside of the wheel.



Attach  the  encoder  to  the  5"  angle  bar.   Stabilize  the  bar  with  ½"  threaded  beam, 
attaching the beam at both ends with short screws.

Attach the microcontroller, RF module and battery, attempting to evenly distribute the 
weight.  Plug motors into motor ports 2 and 3.  Plug the encoder wire into interrupt port 
2.

Programming and Operation: 
Enter  and  download  the  program shown below,  defining  variables  "encoder", 

"stick", and "dist" as integers.  Use the Channel 2 (the left joystick) to move the robot 
forward a desired distance.  When you release the joystick, the robot should return (more 
or  less)  to  its  original  position.   There  may be  some discrepancy in  position  due to 
slippage.  





Project Notes and Engineering Principles:
The  optical  shaft  encoder  flashes  light  through  a  series  of  cutouts  to  a  light 

detector.  As the shaft rotates, the flashes are counted, with 90 counts equal to one full 
rotation of the shaft.  Unfortunately, the encoder cannot determine whether the rotations 
are clockwise, counterclockwise, or a mixture, so the count must be stored in a variable 
every time the direction of motion changes.

This program waits for Channel 2 (the left joystick) to move the robot forward, 
then measures the distance it  travels  until  the joystick is released and stores it  in the 
variable  "dist".   It  then resets  and reverses direction until  the encoder rotation equals 
"dist", returning the robot to its original position.

The program also demonstrates the ability to read input from an R/C channel, as if 
it were a sensor.

Further Challenge:
The program,  as written requires  that  you turn the microcontroller  off  and on 

every time you want to relaunch of the "boomerang".  Can you modify the program so 
that the robot can be launched and returned until you get tired of playing with it?



Light Seeker

Project Description:  Robot programmed to follow a stationary or slow-moving light 
source.

Kits needed:  
1 Starter Kit
1 Programming Kit
1 Light Sensor

Cut Pieces Needed: none

Bill of Materials:
1 Basicbot chassis
1 light sensor
1 lock plate
1 gusset
11  medium screws
3 keps nuts
1 plate, 5 X 15 holes

1 motor module
1 bearing flat
2 motor screws
1 square bar (axle), 2"
1 small spacer
4 threaded beams

Build Sequence:
Attach lock plate  to  bottom of gusset,  leaving center  (square) hole  open.   Attach light 
sensor to side of gusset.



Attach motor and bearing flat to plate; insert axle.

Add small spacer to axle, then insert axle through lock plate attached to gusset.

Attach threaded beams to 4 corners of plate, and mount on Basicbot chassis.

Programming and Operation:
Download  the  following  program,  defining  the  variables  "leftlight"  and 

"rightlight" as integers.   This light seeker samples light readings from 2 positions (left 
and  right)  and  uses  the  relative  light  readings  to  go  in  the  direction  of  the  lightest 
(brightest)  reading.   It  functions  best  when  there  is  a  single  source  of  light  in  an 
unambiguous, stationary location (for example, a dark garage with a single window).  It 
can also follow a flashlight if the light moves slowly enough, as the sample time for the 2 
readings is slow – "wait" commands were required in order for the sensor to obtain stable 
readings. 





Optional program improvements
The program above can be improved upon in many ways.   Probably the most 

obvious  of  these  is  timing.   The  robot  always  spins  for  0.2  seconds  before  moving 
forward, and always moves forward for 0.5 seconds.  These values can be tweaked to 
enhance  precision;  ideally  the  robot's  "spin"  should  leave  it  facing  exactly  the  same 
direction that its eye was facing, rather than in approximately the correct direction.

Notice that the program follows the same loop: the mounted eye always looks left, 
then right.  This means that the beginning of each loop, the eye must move from looking 
right to looking left before moving from looking left to looking right.  What if the eye 
had two cycles that it alternated between: looking left before looking right, and looking 
right before looking left?

Also consider that the program commands the robot to stop moving while it scans 
the environment for light sensor readings.  Could the efficiency be improved if the robot 
continued moving forward while sampling the light?  What if the robot simply reduced its 
speed instead of stopping?

Project Notes and Engineering Principles:
The light sensor and the line follower sensor are both light sensors, but there are 

slight differences in structure and function.  The line follower sensors emit light, which is 
reflected  off  a  light  or  dark  surface  and  detected  by  the  sensor.   Readings  are  best 
obtained  when the sensor  is  very close to  the surface  reflecting  the emitted  light.  In 
contrast, the light sensor does not emit or depend on reflected light.  Instead, it uses a 
photocell,  whose resistance varies with the amount of light, and the source of light or 
reflecting surface does not necessarily need to be close.  The variable resistance readings 
are analog values, with the lowest values (near 0) indicating brightness and higher values 
(near 1023) indicating darkness.

This light seeker compares the light values to the left and right, and drives an 
incremental distance toward the direction which gives the lower (brighter) value.



Part 3: Advanced Mechanical Projects

Cool kits with advanced mechanical parts are available, but without knowing how 
to use them properly, they too, can become expensive closet hogs.  We wanted to include 
projects that give a taste of what can be done with a few nifty doodads.  These include 
advanced gears (differential, bevel gears, and rack gears), chain & sprockets, tank treads, 
and  omniwheels.   Use  of  the  servo  motor  is  also  introduced  here,  as  well  as  more 
complicated gearing assemblies.

As you become a better  builder,  you will  hopefully become more comfortable 
with taking short cuts, making substitutions, and constructing subassemblies in a different 
order  than  they may be  presented  here,  as  well  as  making  design modifications  and 
improvements.   There are always better ways to do things, and it's up to you to find 
them.



Tricycle Drive

Project Description:  Alternative drive, using one control for forward/reverse movement, 
and one control for steering.

Kits Needed:  1 Vex Starter Kit
1 Advanced Gear Kit
1 Chain and Sprocket Kit

Cut Pieces Needed
2 square bars, 6"
1 square bar, 4"
2 angle bars, 2 ½"
1 angle bar, 5"

Bill of Materials:

1 microcontroller
1 RF receiver module
1 antenna sleeve holder
1 antenna sleeve
1 battery pack
1 motor module
1 servo module
3 small wheels
1 differential
3 bevel gears
1 medium (36-tooth) gear
1 large sprocket
1 medium sprocket
~ 9" sprocket chain
4 chassis rails
2 chassis bumpers
1 metal plate (5" X 15")
1 angle bar (5")
2 angle bars (2 ½ ")

2 square bars (6")
1 square bar (4")
2 square bars (3")
1 square bar (2")
4 threaded beams (2")
37 keps nuts
13 collars
2 large spacers
2 small spacers
3 lock bars
11 bearing flats
3 long motor screws
1 short motor screw
5 screws  (¼ ")
6 screws (3/8")
30 screws (½ ") – substitute 3/8" if short
2 screws (3/4")
2 screws (1")



Build Sequence:
Snap  2  bevel  gears  into 
differential

Insert  6" axles into differential,  inserting bevel  gear, 
anchoring with collars.

Attach bearing flats to chassis rails.



Attach motor module to chassis rail.  Insert axle and attach gear.

Prepare chassis rail for left side of gears.

Add bearing flats to 2 additional chassis rails for outsides of bot.



Add  a large spacer to axles, add wheels, and anchor with collars on both sides.

Attach chassis bumpers to the front and back.



Attach threaded beams to the front of chassis.  These will hold the steering drive.

Assemble  supports  for  the  steering 
wheel.



Mount the steering wheel onto a plate, which enables attachment of servo (do not use 
a continuous motor module here).



Attach sprockets and chain.  It is very difficult to attach the chain while the sprockets 
are on the axles without getting "slop" in the chain.  To minimize the slack, estimate 
the correct chain length and snap it into a circle, feed it around the sprockets, and 
place the sprockets  on the axle  last,  pulling the chain taut.   If  necessary,  add or 
remove  a  link  or  2.  Align sprockets  so that  the  steering  wheel  is  approximately 
centered when the servo is in "resting" position.



Attach steering wheel assembly to chassis using threaded beams on both sides.

Attach  microcontroller,  RF module,  antenna,  and battery.   Plug drive  motor  into 
motor port 3, steering motor into motor port 1.



Project Notes and Engineering Principles:  

Steering Drives
Many simple  robots  are  constructed  with  one  motor  on  each  side,  using  the 

difference  in  speed for  turning  (these are  called  differential drives).   Thus,  the same 
motors are used for controlling speed and direction.  However, when you think of how a 
"real"  car is driven,  only one control (the gas pedal)  is  used to drive forward, and a 
separate  control  (the  steering  wheel)  is  used  for  steering.   A robotics  car-type  drive 
(whose steering mechanism turns the 2 front wheels) and a tricycle drive (with a 1-wheel 
steering mechanism) use this principle.

Car-type Drive Tricycle Drive

In  order  for  a  car  to  turn,  the  inside  and  outside  rear  wheels  must  travel  at 
different  speeds.   With  only one mechanism controlling  forward  motion,  how is  this 
possible?  One way is to use a differential or differential gear (not to be confused with a 
differential drive which uses 2 motors).  A differential distributes unequal amounts of 
"spin" to the 2 axles on either side.  Watch the motion of the axles in the differential as 
your steering drive turns.

One thing to note is that this drive does not accurately mimic the behavior of a 
car: in a car; the front wheels are used for both locomotion and steering, whereas in this 
tricycle drive configuration the back wheels are used for locomotion.

This robot drives "counterintuitive", i.e. pushing the joystick up moves the robot 
toward you, rather than away.  This problem can be fixed in a number of ways, including 
1)   rebuilding  the  robot  as  a  mirror-image,  2)  reprogramming  the  channels  in  the 
software, reversing the direction of the motors, or 3) reprogramming the transmitter.

Chain and Sprocket Uses
In this project, the chain and sprockets are used to transfer motion from one place 

to another.  Gear trains also accomplish this, but a big advantage of using chain and 
sprockets is that a desired gear ratio can be maintained without being limited by the size 
of the gears – the 2 axles can be close together or far apart, and the distance doesn't have 
to be an exact multiple of a certain gear size.  The main disadvantage is that chain is quite 
fragile and is likely to break in a competition environment, especially if it is exposed and 
taut.  Use sparingly.



Cup Crusher

Project  Description:   Device  translates  a  motor's  rotational  motion  to  linear  motion 
capable of crushing a cup.

Kits Needed:
1 Starter Kit
1 Advanced Gear Kit

Cut Pieces Needed:
2 angle bars, 5"
2 angle bars, 2 ½ "

Bill of Materials
1 microcontroller
1 RF module
1 battery
1 motor module
1 plate 5 X 15 holes
1 plate 5 X 10 holes
1 plate 5 X 9 holes (5 X 10 also OK)
4 angle bars, 2 ½ "
2 angle bars, 5"
4 rack gears
6 bearing flats
2 gussets
2 chassis rails

1 square bar, 5" 
1 square bar, 4" 
1 square bar, 3"
7 collars
1 worm gear
1 large gear (60 tooth)
2 gears, 24-tooth
2 long motor screws
12 short motor screws (for rack gears)
27 medium/long screws
27 keps nuts
3 large spacers
1 small spacer
6 plastic washers



Build Sequence
Attach gusset to 9 X 5 hole plate (a 10 X 5 may be used for a more symmetrical, equally 
functional design, with plate extending an extra row beyond the edge of both gussets).  Align 
another gusset on right, but do not attach.

Turn plate upside down.  Attach bearing flats as shown.

Turn plate right-side up and attach 2 ½ " angle bar.



Attach 2 ½ " angle bar to motor.  

Attach bearing flat to 2 ½ " angle bar, and attach angle bar to plate.



Slide  axle  into  motor,  with  worm gear  and  anchoring  collars  as  shown.   These  will  be 
readjusted when the large gear is placed.

Attach rack gears to the middle row of holes in chassis rails.  Connect racks loosely to slotted 
portion of angle bars – the width of the frame will depend on the nesting of gears, which will 
not necessarily correspond exactly to a fixed hole position.  



Place rack inside gusset edges, adjusting the width of the frame so the center plate slides 
smoothly along the sides of chassis rails.  Place axles in bearing flat holes, add large spacers 
and 24-tooth gears.  Tighten when gears are nested with optimal placement – smooth turning 
with minimal wobble and minimal friction.  Screws in the slots will need to be very tight, as 
more slippage occurs in the slot than would occur with holes.



Attach bearing flats to 5 X 10 hole plate, leaving center holes open.

Place 3 plastic washers on each axle.  Turn plate upside-down and slide over axles, with 
bearing flats on the inside.



Attach 2 ½ " angle bar to bottom of plate, opposite the angle bar on other plate.  Tighten 
collars on the ends of axles.  Flip frame and push axles through.  

Place large (60-tooth) gear on left axle, and spacers (1 small, 1 large) on the right axle (these 
are used to prevent the gear from rubbing on the right collar.  Anchor the gear and spacers 
with collars.  Adjust the position of the worm gear so that the large gear nests properly. 
Tighten the collars on the sides of the worm gear – these will have a tendency to slip if not 
properly tightened.



Add a plate to the bottom so the device stands up.

Attach motor  to  microcontroller  motor  port,  battery,  and RF module  to  operate  with the 
transmitter.  There is sufficient torque to crush a paper or Styrofoam cup.

Project Notes and Engineering Principles:
This project demonstrates the use of a  rack and pinion system which translates 

rotational motion from the motor to linear motion, with the circular pinion engaging teeth 
on the rack gear.

The worm gear is used to greatly gear down the motor.  The worm gear operates 
like a screw, with each full rotation of the axle causing the gear to advance by one thread. 
With the threads nested between the teeth of the 60-tooth gear, each turn rotates the large 
gear by only one tooth, producing a 60:1 geared down ratio.  Thus, the pinion system 
moves up and down the rack quite slowly.

Even with this extreme gearing down and corresponding increase in torque, there 
is still not enough force to crush an aluminum can.  More torque could be produced by 
attaching a second motor (turning in the opposite direction so that the motors operate in 
tandem) and/or gearing down even further.



Holonomic Drive

Original design: FVC #3053, ’06-’07, Occam’s Engineers, posted at 
http://www.chiefdelphi.com/media/photos/28621 and photo 28620 (used by permission).

Design modification and build:  Alan Schambers.
Programming:  Justin Petersen

Project Description:  Another alternative driving base, allowing robot to be easily shifted 
in all directions.

Kits needed:
1 Starter kit
2 extra chassis bumpers 
1 Extra Motor
4 Omniwheels (large or small)
1 Programming Kit

Cut Pieces Needed:  None

Bill of Materials
1 micro controller
1 RF receiver
1 battery
2 plates, 5 X 15
4 chassis bumpers
4 chassis rails
16 short (1/4") screws
36  medium (3/8" or 12"screws)
36  keps nuts

8 bearing flats
8 threaded beams, 3"
4 motors
8 short motor screws
4 axles, 3"
4 small spacers
4 large spacers
4 collars

Build Sequence:

Assemble the Chassis

http://www.chiefdelphi.com/media/photos/28621


Attach the motors

Attach supports and  omniwheels



Attach outside rails

Attach the microcontroller, RF module and battery

Attach the motor wires -  motors labeled 1, 2, 3, 4 plug into ports 1, 2, 3, 4
Viewed from the bottom, the motor numbers go counter clockwise



Programming and Operation:
The following program allows the left joystick to shift the bot up/down/left right.

Project Notes and Engineering Principles:
A holonomic drive enables a robot to rotate in place, move in any direction, or do 

both at  the same time.   This bot is fairly simple to build and fun to drive.  The left 
joystick is  used to shift  the robot  up/down/left/right.   The program included must  be 
downloaded for the drive to work properly.

Further Challenge:
Can you program this bot to spin, as well as shifting in the 4 directions?



Chin-upbot

Design and Build:  FVC #3617, Metal Gear ('06-'07)

Project Description:  Robot designed to lift itself off the ground from a 30-inch high bar.

Kits & Parts needed:
1 Starter Kit
1 Gear Kit (4 extra 60-tooth gears)
1 Metal and Hardware Kit
1 Extra Motor
Note:  An alternative to all these add-ons to the Starter Kit is to buy a second Starter Kit.

Cut Pieces Needed:
3 square bars (axles),  8"
2 square bars (axles), 6"
3 angle bars, 5"
1 angle bar, 7.5" 

Build Sequence

Build the Squarebot or alternative driving base (the Flexigearbot is not recommended as a 
driving base).  Remove the chassis bumper on one end.

Construct the arm as follows:

Build supports for the gear assembly:



Build the lower joint gear assembly, using the three 8-inch axles.









Add the second joint and upper arm



     



Attach the arm to the robot chassis.  This is easier to do if the arm is folded as in the first 
photo in the chin-up sequence below (plug in the upper arm motor into a motor port and 
use the appropriate transmitter channel).  Plug the drive motors into motor ports 2 and 3, 
and plug the arm motors into ports 5 and 6 (channels 5 and 6 are the yellow buttons 
located on the bottom of the transmitter).

To perform a chin-up, unfold the arm, drive the robot forward until it grabs the bar, then 
fold the lower hinge only to lift the robot off the ground. 
 
Note that this robot is rather unstable (it tips easily) because of the small size of the base 
and high center  of  gravity  when the arm is  extended.   A longer  driving  base would 
provide more stability.



Programming:  none

Project notes and Engineering Principles:
This project uses the Squarebot as a driving base (or you can construct your own 

driving base).  If you have one of these already assembled, simply remove the chassis 
bumper on one end and use it to build the arm.  Thus, the project can be divided into 2 
sub-modules  (driving  base  and  arm),  so  that  2  groups  of  students  can  work 
simultaneously.  Double gearing (using 2 of the same-sized gears in each joint) is used to 
increase the surface area that bears the weight of the arm, decreasing the amount of strain 
put on each gear.  Doublewide gears (soon to be available) can also be used.

Multistage Gear Trains
In this project, a gear ratio of 1:25 is achieved by gearing down in 2 stages of  1:5 

and 1:5 (sometimes this is reported as "25:1 ratio, geared down").  More than 2 stages 
(and larger gears) may be used providing even higher gear ratios, limited only by the 
physical space available.  This issue of physical space is not trivial – each gear has a 
certain  width,  and  there  are  only  so  many  of  them  that  can  be  "laddered"  along  a 
sequence of axles.

Sometimes it's easy to theorize how a gear train should work, but assembling the 
actual parts is less than straight-forward.   Some things to consider

1. Where will the drive motor go, and where will the final motion take place?
2. How many axles will be lined up (one more than the # of gear reductions), and 

how will they be supported on either side?
3. How far apart are the axles between each pair of gears?  How will the bearing 

flats on the supports be spaced so that attaching screws don't block the space for 
axles?



Candy Sorter

Original Design:  FTC #548, Geek Squad and FTC #438, Metal Gear ('07-'08)
Modified Design, Build, and Programming:  Justin Petersen

Project Description:  Conveyor mechanism delivers black and white chips to a sensor, 
and separates the chips into 2 different containers.

Kits Needed:
1 Starter Kit
1 Programming Kit
1 Tank Tread Kit
1 Metal & Hardware Kit (plus 2 extra 3" threaded beams – optional)
Inverse angle bars (optional)

Cut Parts Needed:
2 angle bars, 10"
3 angle bars, 5"
4 angle bars, 2 ½ "
3 square bars (axles), 4"

Bill of Materials
1 microcontroller
1 battery
1 servo module
1 motor module
1 line follower sensor
2 angle bars, 15" (one inverse)
2 angle bars, 10" (one inverse)
3 angle bars, 5"
4 angle bars,  2 ½ "
1 chassis rail
8 bearing flats
2 lock plates
1 plate 5 X 10 (slightly larger or smaller OK)
1 plate 5 X 9 (slightly larger or smaller OK)
4 threaded beams, 2"

67 tank tread links
2 tank tread hubs 
1 tank tread roller
3 small spacers
10 large spacers
2 plastic washers
4 long motor screws
31 keps nuts
10 collars
61 medium screws, 3/8" or ½"

Note: For this project, we used one inverted 15-inch angle bar and one 10-inch inverted 
angle bar.  If you have inverted angle bars and can do the same, you'll find maintaining 
symmetry much easier.  However, it is still possible to complete the project without using 
inverted angle bars.



Build Sequence:
Assemble the tank tread assembly as shown below.    The tank tread roller is used to keep 
the tank tread loop as taut as possible.  Using as few links as possible is helpful, but there is 
still some slack even with the smallest number of links.





Attach the rail on the opposite side.



Assemble and attach the tilting mechanism, which uses a servo module to tilt a plate left or 
right, depending on which color chip is being delivered.





Build a base for the assembly to stand on.
Note: The support structure detailed here uses a large number of threaded beams.  If you 
find yourself running short, you can construct a base from a variety of materials, including 
unused chasis rails, chasis bumpers, and angle bars.  Alternatively, you can skip the base 
altogether and simply place the robot on two piles of stacked books (an inelegant but fully 
functional solution to limited resources in the Vex department).



Assemble  the  structure which  will  support 
the line-tracker sensor



Attach microcontroller and battery.   Plug sensor into analog input 1, motor module into 
motor port 1,  servo into motor port 5.  Place chips on belt as it moves them down the line.

Programming and Operation:
Download the following program, defining the variable "light."  Place "light" and 

"dark" chips on the tank tread belt.  The conveyor motor is set to operate at a constant 
speed, moving the chips to the line follower sensor.  When the sensor detects "light" it 
tilts the delivery plate in one direction.  When it detects "dark", which includes both the 
black chips or no chips (green belt is "dark"), it tilts in the other direction, separating the 
white chips from the black ones.  The chips will need to be positioned (sideways) on the 
belt so that they pass under the sensor – too far in one direction or the other, and they 
may not be detected.



Project Notes and Engineering Principles:
Tank  treads  have  a  variety  of  uses,  including  wheel  substitutes,  roller  grip 

mechanisms, and conveyors.   Tank tread rollers are essential to keeping the belt taut; 
alternatively an extra set of wheel hubs can be used.

Mechanically,  this  is  probably  the  most  difficult  project  in  this  manual  to 
construct.



Where To From Here?

Once you've worked through the projects in this manual,  there are many good 
projects  to  try.   Although  most  don't  include  step-by-step  instructions,  some  of  the 
construction techniques are similar some of these projects, and hopefully you will be able 
to reverse-engineer.  The following are recommended:

• The Vex forum:  http://www.vexforum.com/forum.php.  Under the Community 
section, check out the Robot Showcase for designs.

• Vex  Robotics  Official  Website:   http://www.vexrobotics.com/.   Click  on  the 
Gallery link for photos and videos

• Dedicated user sites.  Some good ones (with good pictures and videos) include:
o http://www.tonybuildsrobots.tk/
o http://ducttape477.vexrobotics.googlepages.com
o http://www.vexplosion.com/Home.html (still in development, but a good 

collection of resources)
• Try searching YouTube and Google for Vex robots or similar entries

Happy trials (and errors) to you!



Appendix A:  Recommendations for VexTM Kit purchase (Summer 2009)

Here are some recommendations for new users looking to purchase a new system.  EBay 
is also a good source of less expensive parts, but it requires that you know what is needed 
to "fill in the gaps".  Vex equipment can be purchased at www.vexrobotics.com.

1. Vex  TM   Classroom Lab Kit ($699)  .  Add software for $50.  Although this is expensive, 
it is the most versatile system and best value for the money.   It is recommended even 
for a home user, if you can afford it.  It is the equivalent of the Dual Control Starter 
Bundle ($500) + Booster Kit ($180) + much more.  This system will soon become 
outdated,  but  can  be  upgraded  by  purchasing  either  the  Vexnet  Upgrade  Bundle 
($150) or the soon to be released Vexnet 2.0 system.

2. Vex  TM   Radio Control  Starter  Bundle ($300).    For builders  only (no programming 
capability).  Adding the Booster Kit ($180) greatly expands the building options.  In 
order to add programming capability the options are:

a. Add the Microcontroller ($150), and Programming Kit ($99).  Limit Switches 
($13) and Bumper Switches ($13) are also desirable.  This will soon become 
outdated.

b. Add  all  the  parts  in  "a"  above,  plus  the  Vexnet  Upgrade  Bundle  ($150). 
Simply purchasing the Upgrade Bundle alone ($150) is insufficient.

c. When available, purchase the Vexnet 2.0 system.  Most likely, a Programming 
Kit and Limit and Bumper Switches will need to be purchased as well.

3. Vex  TM   Autonomous Control Starter Bundle   ($400) This is recommended for the indi-
vidual user who wants to start small and build gradually.  It contains programming 
software.  To add radio control capability, the options are:

a. Add Transmitter and Receiver kit ($130).  This will soon become outdated
b. Add Transmitter and Receiver kit, plus Vexnet Upgrade Bundle ($150)
c. When available, purchase the Vexnet 2.0 system.

4. Vex  TM   Dual Control Starter Bundle   ($500) This contains both programming and re-
mote control capability and can be used in competition.  It can be upgraded with ei-
ther the Vexnet Upgrade Bundle ($150) or the soon to be released Vexnet 2.0 system.

5. Vex  TM   Booster Kit   ($180) -  If you already own #2, 3, or 4, this will add a great deal 
of versatility to your kit

6. Classroom Advanced Sensor Kit   ($100) and Classroom Advanced Drive Kit ($250) 
are ways to add capability at a good value.  Check the Classroom products for good 
value, even if you are a single user.

7. There are many other VexTM add-ons that can be purchased separately.  As your skills 
develop, you will discover which ones will be most suited to your needs.  For sugges-
tions see Appendix B:  Additional Parts to Purchase and Cut.



Appendix B:  Additional Parts to Purchase and Cut
Vex pieces are designed to be cut, but novice builders are usually reluctant to cut for fear 
of "ruining" material.  Ordering extra metal and pre-cutting it to frequently used sizes 
will give a kit more flexibility.  Also, if metal-cutting tools are not available on the spot, 
having pre-cut pieces is necessary.  Once builders become more confident, they are more 
capable of cutting pieces while minimizing the amount of waste.

A.  Recommended Add-ons to a Protobot kit alone

Part Name Part # # To order Price Total Cost

Drive Shaft Square Bar Pack SQR-BAR-120-2PK 3 $4.49 $13.47

Collar Pack COLLAR-16PK 1 $10.49 $10.49

Angle 1 X 1 P/N: ANGLE-001-4PK 1 $14.99 $14.99

Angle 1 X 1 , Inverse P/N: ANGLE-001R-4PK 1 $14.99 $14.99

1/2 in. 8-32 Screw Pack SCREW-832-12-28PK 1 $1.49 $1.49

3/4 in. 8-32 Screw Pack SCREW-832-34-14PK 1 $0.99 $0.99

Delrin Bearing 10-pack BEARING-FLAT-10PK 1 $4.99 $4.99

Open End/Allen Wrench Pack
WRENCH-ALLEN-TOOL-
PK 1 $2.99 $2.99

25 X 5 Hole Plate PLATE-25-5-4PK 1 $14.99 $14.99

Bar 1 X 25 Holes pack BAR-25-4PK 1 $5.49 $5.49

Total $84.88
 

B.  Recommended Add-ons to a Protobot Kit + Booster Kit (the Classroom Lab kit 
contains these 2 kits)

Part Name Part # # To order Price Total Cost

Drive Shaft Square Bar Pack SQR-BAR-120-2PK 1 $4.49 $4.49

Angle 1 X 1 P/N: ANGLE-001-4PK 1 $14.99 $14.99

Angle 1 X 1 , Inverse P/N: ANGLE-001R-4PK 1 $14.99 $14.99

Open End/Allen Wrench Pack
WRENCH-ALLEN-TOOL-
PK 1 $2.99 $2.99

25 X 5 Hole Plate PLATE-25-5-4PK 1 $14.99 $14.99

Total    $52.45
 

How to cut
1.      Angles 1 X 1 (15" long) – 4 total (or 6 total with Booster Kit)

*Cut one piece into 10" + 5" (on the notch)
*Cut one piece into 12.5" + 2.5" (on the notch)
Leave 2 pieces uncut
(If adding to a Booster Kit , cut 2 pieces for * entries, leaving 2 pieces uncut)

 



2.      Angles 1 X 1, inverse (15" long) – 4 total (or 6 total with Booster Kit)
*Cut one piece into 10" + 5" (on the notch)
*Cut one piece into 12.5" + 2.5" (on the notch)
Leave 2 pieces uncut
(If adding to a Booster Kit , cut 2 pieces for  * entries, leaving 2 pieces uncut)

 
3.      Drive Shaft Square Bars (12" long) – 6 total (no notches)

Cut one piece into 6" + 6"
Cut 2 pieces into 8" + 4"
Cut one piece into 4" + 4" + 4"
Leave 2 pieces uncut

 
4.      Plates 25 X 5 (25 squares long, 5 squares wide) – 6 total 

Cut 2 pieces with width 5 squares, lengths:  4 + 6 + 8 + 7 squares = 25 squares
Cut 2 pieces with width 5 squares, lengths:  3 + 10 + 12 squares = 25 squares 
Leave 2 pieces uncut

 
5.      Bars 1 X 25 can easily be cut to size on the spot with a pair of tin snips or strong 

wire  cutters  (keep  a  file  handy  for  sharp  edges).  No  standard  sizes  are 
recommended.


